D-A149 093  SYMMETRY BREAKING FOR A CLASS OF SEMI-LINEAR ELLIPTIC 1/1
PROBLEHS(U) WISCONSIN UNIY-MADISON MATHEMATICS RESEARCH
G CERAMI OCT 84 MRC-TS5R-2759 DAAG29- 80 C BB

UNCLRSSIFIED

END







v —
P W ORI

e
a0 N LIPS ISR B B Tl )
S S S PN ft“.ﬁ
ALY

EHT
£ M 20
““ Il i =
——— mul,B
=

5

|||||
I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




.....
................................

MRC Technical Summary Report #2759

SYMMETRY BREAKING FOR A CLASS OF
SEMI-LINEAR ELLIPTIC PROBLEMS

AD-A149 093

Giovanna Cerami

Mathematics Research Center

s University of Wisconsin—Madison
610 Walnut Street

‘  Madison, Wisconsin 53705

October 1984

g (Received August 24, 1984) '_:-"7-'-'_"._-' ;

' e
—J ‘~E.'
| Approved for public release SR
E Distribution unfimited - 2
Iy

i C
@QELECTE
JAN 16 1985 &

Sponsored by

# U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park
North Carolina 27709

..... e ee e
) R ARSI AT
AR PN AN A

*s e ®, . * Pl W o T,
W ACAEREN M SN NI NN NEIEN N R AR




W P LT T T T N e e T e T T T TW T T - e —
e e R0 i, R LN I S S L R S Sl P Tl A A N A el AL DR . . v
‘. P e e e T T Y S e T T W T T N T L T TV N e T

- g

UNIVERSITY OF WISCONSIN ~ MADISON
MATHEMATICS RESEARCH CENTER

SYMMETRY BREAKING FOR A CLASS OF
SEMI-LINEAR ELLIPTIC PROBLEMS

Giovanna Cerami.
. Technical Summary Report #2759
October 1984
- . ‘ @STM@

Yor d

Consider the nonlinear elliptic problem.

e - - .

- -Au = £(u) |x| <R

u=0 x| =R .

Suppose this problem has a family of positive radial solutions parametrized
J1 tiders
by R, 1{i.e., u§(|x|). In--the paper -we—study the possibility of the existence

of nonradial solutions of (*) bifurcating from the radial solutions family.

t .5 showen
4
Answering a question posed by Smoller and Wasserman, we-show this happens

. . ]

if f satisfies suitable assumptions. Therefore, we investigate the global

structure of the nonradial solution set, /= /rv&vffaa-f’&
A - N

AMS (MOS) Subject Classifications: S8E07, 47H15, 35325, 35B32
Key Words: Semilinear elliptic boundary value problem, Radial and nonradial
solutions, Bifurcation, Symmetry breaking.
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SIGNIFICANCE AND EXPLANATION

Consider the nonlinear elliptic PDE
~8u = f£(u) [x| <R
: u=0 |x] = R .

Suppose this problem has a family of positive radial solutions parametrized
by R, i.e., uR(lxI). We are interested in the way in which this family of
solutions can bifurcate into nonradial solutions. when this happens we say
that the (rudial)llynnotry breaks.

We give sufficient conditions for symmetry breaking to occur and we study

the structure of the nonsymmetric solution set.
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SYMMETRY BREAKING PFOR A CLASS OF SEMI-LINEAR
ELLIPTIC PROBLEMS

Giovanna can-i'
1 .
Consider the problem

=Au = f(u) in BR

(1.1)

us0 on QBR
where By 2%, n > 2, is the open ball of radius R centered at the origin and
f:R*R is a ¢:2 function.

Suppose that there exists an interval (Ry,Ry € R* such that v R e (Rq,Rp) the
problem (1.1) has & radial solution up. A natural question to ask is whether or not for
these values of R there are nonradial solutions, and, in particular, whether the
nonradial solutions, if they exist, are close to the radial ones. In some cases it is
easily possible to give a (negative) answer. If, for example, f is non negative (or non
positive) a simple application of the maximum principle and of a well known theorem by
Gidas-Ni-Nirenberg [5] permit us to conclude that every solution of (1.1) must be radially
symmetric.

In this paper we are interested in the possibility of the existence of nonradial
solutions of (1.1) bifurcating from the radial family.

In order to be more precise it is useful to rewrite the problem (1.1) in the form
(1.2) #(R,u) = 0
where

o n x c;"(i,) » c;"(i',)
is the operator defined by

(1.3) (Rou) *u=-R%G £(w) = (A"

>
Istituto 41 Matematica, Pacolti 4i Scienze della Universitd 4i Palermo, Via Archirafi n.
34, 90123 PALERMO, ITALY.

Sponsored by the United States Army under Contract No. DAAG29-80~C-0041 and by a CNR-NATO
Fellowship.
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1+a ~ -
and Co (51) denotes the set of the continuously differentiable functions on By which

vanish on 381 and whose first order derivatiQes are HSlder continuous in ;1 with

exponent a (a e (0,1)). c;*“(;1) is a Banach space under the usual norm
qu (x)-uxi(y)l
tuf = max lu(x)| + max max lux (x)] + max max = .
xeB, 1€i¢n xeB, i 1€i¢n x,yeB, Ix-y|
Then to a radial solution ug € C;+"(§£) of (1.1) there corresponds the solution of (1.2),

(Rjuy) € R x ) "(R), Wple) T up(Re).

We will say that the symmetry breaks at R if (R,;;) is a nonradial bifurcation
point i.e. if every neighborhood of (R,;;) contains solutions of (1.2) (R,u) with u
nonradial.

It is known (see for example [4]) that a necessary condition to have symmetry breaking
at R is that ker Gu(R,;;) contains nonradjial functions.

We are concerned with giving sufficient conditions to have nonradial bifurcation for
(1.2) at a point (R,ug) where up 1is a positive radial function.

Our main interest is in a problem posed by Smoller and Wasserman in [8), where they
study symmetry breaking problems for positive solutions of semilinear elliptic eguations.
They close (8] with the following conjecture: suppose f € F, F being the family of
functions f e C2(R) such that £(0) < 0, (£(t)/t)' > 0 and f£"(t) €0 V¢t >0 and
f(t) > 0 for some t > 0. Then by a result of {7) it is known that there is an interval
(Rq,Ry] such that ¥ R € (Ry,Ry] there exists a unique positive radial solution of (1.1)
and the necessary condition for the symmetry breaking is satisfied only if R = Ry;. Does
the symmetry break at R,?

We will show this actually happens for f "generically” chosen in the subclass F'
of F made by the function satisfying the slightly stronger condition £"(t) < 0
¥V t > 0. Here "generically” means that given f € f', it is possible to compose it with
an arbitrarily small translation ohtaining a function which is still in F' and for which

there is symmetry breaking from the positive sulutions.
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Wwe will prove, more, that this bifurcation phenomenon is global i.e. the set of

nonradial solutions of (1.2) bifurcating from (R2'“R2) is either unbounded in
R+ x C;’a(;ﬂ or meets the connected component of the radial solutions of (1.2) containing
the positive solutions in a point different from "‘2v“n2’°

In our arqument we have taken advantage of some of the ideas of [8]; indeed, using the
method introduced in (8], Smoller and Wasserman could have obtained an analogous local
result. However our proof is more strajightforwvard and simpler. Moreover our point of view
allows us to investigate and understand the global structure of the nonradial solutions
set.

The paper is organized as follows: first, in section 2, the bifurcation problem from
a family radial solutions is studied in a little more abstract framework. Then, in section

3, the result is applied to the Smoller-Wasserman problem to get a local symmetry

breaking. Finally the global bifurcation resvilt is proved in section 4.

Acknowledgement. I am grateful to Professor P. H. Rahinowitz for several helpful

discussions on the subject.
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2.
~i+n — “tea —
In what follows we will denote by C, (B)) and % (B,} the subspaces of
1+a —

o (B‘) consisting respectively of radial functions and of functions even with respect to M
the first n - 1 coordinates, i.e.

~tta, — 1+ — .

- ! -

C, (B,) uecy (r) : ux) =ullxl))

“q+a,— 1+a —

cg (R =Tuec, (8 : WXy oXg oo eaXpy g0 ) ® Ul=Xq, "Xy 000X _ox )}

4 will be the operator defined by (1.3).

The aim of this section is to prove the following:

- + -
Theorem 2.1. Suppose that there exists R, E € R, ¢ <R and a c! map
- - +0 -
Y : (R=€,Rte) * c; (31)
such that if we put Y(R) = up the following conditions hold

Hy) VRE (;-E,;ﬂ:), (R'“R) is a solution of (1.2), ugp @ E;m(;‘) and there is a

neighborhood of (R,u_) in (R-€,R+€) x E;*°(E;) in which there are no
R
solutions of (1.2) except these;
Hy) u_ is positive and :—t u_ = 0.
R R r=1
Hy) R £"(u_)Y'(R) + 2 £'(u_) # 0.
R R

Then (;,u_) is a nonradial bifurcation point of LR
R

140 — 140 —
Denote by "‘u(R,u) the linear operator from ¢, (By) in Cy (By) defined by
8 (Ru)v = v - R%G £'(u)v .
In order to prove theorem 2.1 we start with a lemma which gives a characterization

of ker 0“(R,u) when (R,u) 4is a solution of (1.2) and u does not change sign in By.

We recall that in this case u 4is, by the Gidas-Ni-Nirenberg theorem (5], a radial

function.
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Ionge. 2,2+ let (R,u) be a solution of (1.2) where u 4is positive [negative]. 1f

K=zive c;*“(i}) t v+ RG £ (u)v = 0}
then K is

(a) either 70} or a 1 dimensional set made by radial functions if :_r u] ret ¥ 00

(b) either an n-dimensional set made by nonradial functions or an__(n+1)-dimensional

set spanned 1 radial function and n nonradial functions if g—r' u] -1 " 0.

Proof. Suppose u is positive. Then, as mentioned before, by the Gidas-Ni-Nirenberg

theorem {S], u 4is a radial function and, moreover, -g; ulr) <0, 0 ¢r ¢ 1.

It is a standard result (3] that every element of K can be written in the form

-
(2.1) wir, ) = ¥ a(r)e(® oc<crci1 0es™!
x=0 x k

where mo is a constant and for k > 1, LS is an eigenfunction of the Laplacian on the

i (n~1)-sphere g1 corresponding to the k-th nonradial eigenvalue. Hence a,(r) is a

solution of

(2.2) "3l :: (™ V') + r'zlkv(:) = R2#* (uiwlr)

where r € (0,1) and ‘k = k(k +n~2) for k > 1. Moreover ap{(1) = 0 and by the
continuity of v in By, & (0) = 0 ¥ k. It is ohvious then that any a, and in
particular a3 is uniquely determined up to & constant.

Differentiating -Au = R%f£(u) with respect to X9, we deduce that -:—r u is a

solution of

(2.3) =" L ")) ¢ 2 2nenwn) = B2 (udwtr)

0 <r <1, satisfying the condition w(0) = 0.

Thus

ay =c (ﬁ n) ¢ = const.
because both solve (2.3) with the initial condition w(0) = 0, 8o in the case (a),
a4(1) = 0 implies c = 0.
It x>, )k >n=1 so0 & oras at least Xk - 1 =zeros in (0,1). Using comparison
arguments, since :_r u {s never 0 in (0,1), from (2.2) and (2.3) we deduce then

a =0 vk>1 .,

5a
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Therefore we can conclude that in case (a), the set K is fc ay(r)/c e R} 8o is
{0} or a 1-dimensional set according to ag 2 0 or not. In case (b)
K= fe,a,(x) + c.‘,(g—r w)e (f)/e ¢, € R}
8o, since m1( 4) varies in an n-dimensional space (the space of the spherical harmonics of
the first order in n variables) and g—! u¥ 0 in 0 <r <1, the conclusion follows.
If u is negative the proof is the same after observing that Gidas-Ni-Nirenberg

theorem implies u radial and %r-u >0 vre(o,t). @

Remark 2.3. A result analogous to lemma 2.2 is proved in [7], but, for completeness, we

have preferred to give the above proof here. It is slightly different from that of [7].

We recall now a bifurcation theorem by Crandall and Rabinowitz [1].

Theorem 2:4- let X, Y be Banach spaces, V a neighborhood of 0 in X, X, € eR, and
P (T—e,Tﬂ:) xXV-+Y
have the properties
a) F(A,0) =0 ¥ [A=1| c¢
b) the partial derivatives r,, F,, Pax exist and are continuous

c) ker px(T,O) and Y\ ker px('x-,o) are one dimensional

a) !XX(T,O)xo ¢ Rlnqe(?x(T,O)) where ker(?x(T,O)) - Spanfxo'h .

If Z is any complement of ker(rx(T,o)) in X then there is a neighborhood U of

{(2,0) in R x X, an interval (-a,a) and continuocus functions ® : (-a,a) *+ R
Y : (-a,a) * 2 such that ®(0) =3 %(0) = 0 and

F o) nu= l{ela), ax, + adla)) : lal < at v (3,00 : (»,0) e ©)

0

Proof of Theorem 2.1

Consider the operator
140 —
P : (R-E R+e) x c0 (B ) * Cy (31)

defined by

where G was introduced in §1, (1.3). Note that G is a compact operator from C;ﬂ(;p .

F(Rr‘) =z + Unp + RzG t(”‘“R) -.—-——.1

> .
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t+q =
in ¢, (By).
Since up solves (1.2), F(R,0) = 0 ¥V R e (R-¢,R+e),
It is clear that proving that there are nonradial solutions of F(R,z) = 0 in any

neighborhood of (;,0) is equivalent to proving that (?k,u__) is a nonradial bifurcation

R
point of 8.
. The operator
o 1+a ~ tea —
Fg(R,0) 1 Cy (By) +Cy (B,)
is defined by
._ v+ v+ RG £'(ug)v
*:; and using Hy) and lemma (2.2) we deduce that the set

k= fvec)t®®,) 1 P (R,00v = 0}

is either n or n+!1 dimensional.

Hypothesis H¢) and Hy) exclude the last possibility. Indeed consider the restriction

.. of ¥ to (R-g,R¥e) x E;N'(;‘), it defines an operator
o ~ = = ~1+a — ~i4q —
: P : (R-€,R¥c) x C; (B,) + C, (8,)

such that F(R,0) = 0 ¥ R € (R-g, R+€).

Jsing the regularity of Y it is easy to check that the condition (b) of theorem 2.4
is satisfied. Moreover
K= ived) @) + P R,0v =0} =xn & @)
Thus if X is (n+1)-dimensional, X is i-dimensional, and the condition (c) of
Theorem 2.4 is verified too. The last condition of Theorem 2.4 in our case becomes

3 f; (RE"(u_)y'(R) + 2!'(u_)}vzdr £ O
' R R

where v € i. and, by H3), it is fulfilled. Then we can deduce that in any neighborhood
of (;,0) there are nontrivial radial solutions of F(R,0) = 0. But this implies that in
any neighborhood of (;,u_) there are radial golutions of (1.2) different from those of

3 the type (R,Y(R)) in oo:tr-diction to Hy). So K must be n-dimensional and consist of

nonradial functions.

Since
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%
o
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R_"a a
—=—— — and —_—u = 0
Ax r dr — dr ~—
i R R[] r=1 M
differertiating the equation =-Au = sz(u), with respect to x; we see that # is a
i
solution of =-Av = izf'(q_)v in By, satisfying the 0-boundary condition. Then the set

R aq-

B = { ’X_R' i= 1,2-.-!’!‘
i

is a basis for K. Therefore it is easy to check that :-.*-‘

, - “lea —
i K=K nNC, (B1) - -‘:':1
Au - . 4
5 by .
is a 1-dimensional set [spanned by 3713-, a nonradial function].

n -
— -— 1+a —
Now consider the restriction of F to (R-€,R+€) X co (31). It defines an operator
2 - - “t+a,— “1+a —
F : (R-e ,R+E) X Co (B,) + Co (B,)

and arguing in the same way as before for F, we can apply Theorem 2.4 and conclude that,
- —_ - “1+a —
in a suitable neighborhood V of (R,u_) in (R-€,R4e) x Co (B,), the set of nontrivial

- R
solutions of F(R,z) = 0 is a continuous branch of nonradial functions. =

.‘.ﬁ._",*';f., Py

Remark 2.5. If we denote by 0(N) the group of the orthogonal matrix T acting on R®

i and by T the representation of 0(N) in Cg'm(;‘) defined by
TMzx) = z(x) , zec B, Teom
the operator F turns out to be equivariant, i.e.
def
T(T)F(R,z) "= F(R,z(Tx)) = F(R,T(T)z)
: and the set of the solutions of F(R,z) = 0 is invariant. 1In fact, if F(R,z) = 0
0 = T(T)F(R,2) = F(R,T(T)z)

Moreover it is not difficult to check that the group O0(N) acts transitively on K,

VovyvyeK, vy #0 Zf e R* and T e O(N) such that vy = EM(TIv, .
So the manifold of the nontrivial and nonradial solutions of F(R,z) = 0 in V

- - 1+a —
corresponds, via the group action, to an n-dimensional set in (R-€,R+f) x Co (51) of

nonradial solutions of F(R,z) = 0,
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Remark 2.6. A wore precise description of the bifurcating set from (;,0), of
F(R,2) » 0 can be obtained using a theorem of Prodi ([6], Th. 1) or a theorem of »
Vanderbauwede ((11), T™h. 6.2.6) concerning bifurcation for Fredholm operators of 0O-index,
subject to the action of a group of symmetries, when the dimension of the kernel of the
linearized operator is bigger than 1. Both of them allow us to conclude that, under the
hypothesis of theorem 2.1, the bifurcating set is locally an n~dimensional manifold.

But, since in our application we are more interested in the "global™ structure of the

bifurcating set, we have preferred to state the local bifurcation result in a way such that

the proof is simpler.
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Consider the family F of functions f e c2(m) satisfying the following assumption:
hy) £0) <0 ; FE>0 : £(€)>0

hy) £7(t) <0 Vvt >0
hy (EEN' 50 veso

In [7) it was proved that

Theorem.3;1. For each fe F, IR, Re R : 0 < Ry < R such that V¥ R e (R,,Rl the

problem (1.1) has a unique positive (and therefore radial) solution up and

:—t uR] =R € 0 where the equality holds if and only if R = ;.

This section will be devoted to the study, locally, of the symmetry breaking problem
for this class of functions.
For fe ' let fi(t) = £(t-8),

We have the following result:

Theorem. 3.3 Let f e F. Then & = 5(£) > 0 such thar v 8 e [0,5], £, e F. Let

(R1 ,;] denote the interval of K% such that ¥ R e (R1 ,E] the problem

“Au = fg(u) in B,

u=0 on 35R

has a unique positive solution. Then for almost every & e [o,?] the symmetry breaks at

R.

Remark 3.3. Observe that the interval (R1 ,;] depends on & and f,

We start the proof of theorem 3,2 with the

lemmg.2:4- VT eF 38, =&(f) :vEe o8] f,efF.




Proof. We begin by observing that it is an easy exsrcise to verify that hy), hy), hy)
imply
(3.1) £'(t) >0 ve >0

By the continuity of £, f', £* it is possible to find ﬂo > 0 such that

£(t) <O
£'(t) >0 vtee [-5,,0]
£7(t) < 0
and
£(t) > 0 vee [ted,t)

then f, v & e [0,6,] satisfies hy), hy) and f£}(¢) >0 ¥ ¢t >0
In order to verify h;) we have to show that
£R(e)t = fa(e) > 0 vielod)
i.e.
£'(t~8)t - £(t~8) > 0 ve>0

and this is obvious too because

if ©> 4 £r (e=8)t = £(t=8) > £'(t=R)(t=d) - £(t~K)

while if ¢ < & £'(t=-f) > 0 and f(t-f) ¢ 0., &

We now turn to the proof of the symmetry breaking result as an application of Theorem

2.1,

In order to do this, first we need to give an idea of the way in which Theorem 3.1t is
proved in (7).

We observe that since a positive solution of (1.1) is a radial function (by the Gidas-
Ni-Nirenberg theorem), it must satisfy the boundary value problem

n=1
“rr + = Y + f(u) = 0 0 <r«<R
(3.2)

ur(O) = u(R) = 0

-fl=

.'
[A
5!

1.. (. . . - ....Q’.
e gy ;{-f‘u,.'"a':-’:
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> .
Then the initial value problem o
—_—
u +-'-‘:—1-u + f(u) =0 0 <r<M L
rr r r . B
(3.3) ’ .
ur(o) =0 u(0) = p .
is considered (when M is a suitably big number). The solution of this IVP is denoted by ) .';_-;_;..
u(e,pl.

It is shown that if f e F, 3; such that ¥ p ? ; the unique solution of (3.3),
u(*,p) is such that u(R,p) = 0 for some R.

Precisely it is proved that, if we define

R(p) = minfR : u(R,p) = 0}

the domain of R(p) 1is [;,W), R(p) is continuous decreasing, 1lim R(p) = Ry,
0 < R, < R(P), u(R(p),p) <O Vp>p and u (R(P),p) = 0. S0 for P> 7. the solution
u(+,p) of (3.3) will be the unique positive solution of (3.2) in 0 < r < R(p) (and,
then, a radial solution of (1.1)) satisfying the boundary condition u(R(p)) = 0.

Of course u(°*,p) can be considered as a function of both its arguments in
{o,M) x l‘ Mm> R(;)) and it can be proved {see for example (7) appendix] that if
tec? sois u.

Suppose now that
(3.4) up(i,;) $0 where R = R(;). up = ;; u

Then by the implicit function theorem we deduce that there exists a neighborhood of (;,;)

Mz (R-e,R+€) x (p-n,p+n) such that all of the solutions in Tl of the equation o

u(R,p) = 0 are pairs (R,p(R)) where p is a ¢:1 function defined in (;-t,;ﬂ:).

Thus we are able to define

1'0‘(!(— -

Y : (R-e,Rée) + C, (B)) )

(Y(R))(x) = u(R|x|,p(R)) = up(lxl)

Moreover it is not difficult to see that there is a neighborhood of (E,u_).

R
+ 1+a — - =
Us f(rR,u) @ R x ¢ " (B) s IR-R| < €, tu-u_I < €} such that to each R : |R-R| < € there
r
corresponds a unigue radial solution of (1.1) in U.
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It is clear then that, since u is a c1 function of r and p, Y is continuous

e e v

differentiable and satisfies the conditions n,) and llz) of the Theorem 2.1. Moreover

o s
s % te

(Y (R (x) = up(Rlxl,p(r))|x]| + uy(R|x],ptr))p* (R)

Note that ¥ x € B,, n(;' .p(-l-)) >0 and u:(;' ,p(.l;)) < 0, by the Gidas-Ni-Nirenberg

P e
.“° .l a.- Y,

theorem, and p'(;) = 0.
Therefore the condition H3) of theorem 2.1 bacomes

(3.5) RE"(u_)u_ (R]x|,p(R)) |x]) + 2¢%(u_) 4 ©
R R

and it is verified because if f € F, £%(t) < 0 and f'(¢) >0 ¥V ¢t >0,

Theorem (2.1), then, will give our statement if we prove that, in our hypothesis,

(3.4) is verified.

80 we have to show that for fixed f & F, 38 >0 s.t. for a.e. 8 e [O,Kl, the

solution U of(3.3) corresponding to f; verifies (3.4).

In order to 4o this, consider u, the solution of (3.3) related to £, and observe

that u takea negative values for r € (o.n(;)): in fact vp> ;, u(R(p),p) = 0 and

u (R(p),p) < 0.

Let ¥ > 0 be a number such that - is a value of u. By Sard's theorem (10] almost
every number in {-X,0] will be a regular value of u. Let us take T unf%’,ﬂo} where
8, is the number defined in lemma 3.4, Choose § e {0,~8] such that -& is a regular

value of u and consider

;.“QK

Then
n~-1 ~ n=% ~ ~
vt 5ot t(u) = LI f.(u)
- and, since u(e,p) satisfies the initial conditions ul(0,p) = 0, u(0,p) = p, U(s,p+t) o

satisfies i'a';(o.r&) = 0 and u(0,p+8) = p+d, Obviocusly 0 1is a regqular value of u

because U = 0 4if and only if u = =f,
Now to get (3.4) observe that f, e F =0 dpg and a continuous function

Rip) t ¥vp> Pr ulr,p) is the only positive solution of

-13~
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+-"—'lu + f,(u)=0 o<r<‘i(p)
rr r r &

u 0) =0~ u(R(p))

and ‘i(p) is the only value for which
U(R(ps),py) = 0 = U_(R(pg)opy) -

Since 0 is a regular value of u, ;p(i'(ps),ps) so. B

R
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N
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4.

This section will be devoted to the proof of a global result concerning the
bifurcating set of nonradial solutions of (1.2).

In what follows f will ba a fixed function in F and ¥, & the operators

100(; )

+ _ ~1ea,= ~
T:lxcn (B,) » ¢, (B,

- +  “1ea,—- “1+a,~
d: R x co (l,) *co (n‘)

obtained restricting the operator ¢ defined by (1.3) to &* x 5y °(B,) and to

+ _ “qea =~

R x> Co (D‘)
We will suppose that f 1iv an element of F for which the local result of symmstry

respectively.

breaking can be proved. We think it is uvseful to summarize the properties of f.

Py) AR, ® 0 < Ry ¢ Rivee (n,.;l there exists a unique u, € c;“(i,) positive
such that .(g,‘,‘) = uy - g g(“‘) =0, %“l(') <0,0<yrct1, ¥R E (51,;) and
X u e d + @&
3 R l’l,
1
‘ P;) 3c >0 such that in U= f(rR,u) € l‘ x c;*u(;ﬂ s In-il <€, hu=u_l < e} the
R

solution set of ¥(R,u) = 0, N, is made by pairs (R,up), ug = Y(R), wvherse Y is a

continuous differentiable function defined in (:-c,;n) and v'(;) < 0.

Py) (R,u_) is a nonradial bifurcation point for *.
R

Denote by

R)M

Nt T fru) e (LT x EE) ¢ BRu) =0, w
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; R R-¢

lamns.4.1. There exists a neighborhood V of M in (R,,iﬂ:) x E;”(?,) such_that the

only solutions of ¥(R,u) = 0 in V are the points of M. 80 VYRrRE (u,,;n) there ig
such that (R,up) € V and $(R,u) = o.

a_unique function ug € C, (3,)

Proof. The atatement follows using the property P,) if (R,up) € N and obeserving that

if (R,ug) € M\ N, ug is in the interior part of the positive cone (up > 0 and

ug < 0, 0 < {x| < 1) so, by the property Py) cannot be a bifurcation point for 3, @
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In what follows i1f P is a subset of R xc; (

-— + ~ YR -
B,) (resp. B xC, (),
2* % )"(3,)) we will dencte
- ~ltQ - "0 v-—
P, E fu € cl™(B,) resp. Co "(By), Cp  (By)) ¢ (A,u) @ PY

As norm in & x c;“('i,) ve will take

TRV REIR DY I Y -
) cg o,

and if A, B are subsets of ®' x ¢;*%(3,)

0(A,B)
will be the distance between A and B.
Denocte by R the connected component of the set of the solutions of X(Rr,u) = 0

containing N.

lameg 4,3- Tbs set R\N' is either unbounded in ®* x G, °(F,) or is bounded in which
case it mests (0,0).

Proof. Pirst we obeerve that if (R,uy) €N Dby lemma 4.1 the index
1(T(R,*), up,0) 1s defined ¥ R € (Ry,Béc)
moreover, by the homotopy invariance property of the topological dagree, must be constant
YyRE (l',;n). So, since the FPrichet derivative 3“(;.\‘_._) is nonsingular (see proof of
Th. 2.1) and then 1(3(-!','). ui.O) is equal to +1 or =1, we can put
1¥(R,0),0,,00 =1 VRE (R, o) .
Suppose that RN\ M’ is bounded and does not meet (0,0).

Then there exists an interval [R',R") € K 10 CR ¢ R CR", such that

~1+a,=

R\M® ¢ [R*,R"] x C, (By)
We can assume R' < Ry,
b.-
N 8ince Um o b .=+ and R\M® 1is bounded and cannot mset any point
o R*R c
(R,ul)au' 0

(R,ug) € N' (by lemma 4.1), an R° must exist : B > Ry such that ¥V R & (Ry,R’)

(R,u) € R\M* == luls1” _ < '“R'~1+c -

5 (B ¢ (B

-17=
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(vhere ¥ R, uy s s.t. (R,up) €M'].
Consider then a numbexr Re @ R,(l.(l' and
Re = R (R, +=) x S 0@, . | :
Of course Re can be chosen such that Re N N' is bounded. Then since R\M' 1is bounded
Re will be bounded. 8o, following the method described in [10] (Th. VIII.V) it is
possible to construct an open bounded set 0 in [R,,+®) x E;N(;ﬁ containing Re and
having no zeros of #(R,*) on M:l boundary 30. Thus the topological degree
a¥(r,), 0,,0) 1s defined VRO R,
and, by the homotopy invariance property, must be constant. 8ince if we take R (R > R")
big enough Op = §, we deduce
ad(r,), 0,,0) =0 wr>OR,
Moreover ¥V I & [Re,R'}, dsy such that in the closed set
;(“n"l) =fue E;“(;,) t lu=u ! € s } there are no solutions of #(R,°) = 0 other
than ug. S0 ¥ R € [Re,R")
a(¥(r,), 0N\ Blu,,8.),0) = -1(¥(R,),u_,0) = =1
Now consider the set
R® 2 (R\N*) n ((0,2°) x E)°%F,))
since R\ M' is bounded it is possible to construct (following (9) or {10)) an open
set A in (0,8°) x G)'®(B,) ocontaining R® and having no seroe of V(R,s) on its
boundary 9A. Then
a¥(r,*), A_,0) 1is definea v Re [0,2"] ,
and, since for R ¢ R' small enough Ay = §, using the homotopy invariance property we
infer
ad(m, 1A, 00 =0 wne to,x")
On the other hand for R € [Re,R'], A can be constructed such that
Ag S Op\Blug,8.), 0, by excision, we have ¥ R € [R,R’)
a(¥(r, ), A0,0) = AF(R,),0,\ Bluy,s,),0) = =1

and we get a contradiction. B

-18-
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i Denote now by
E = {(R,u) €R ; Ker ;‘(R,u) ¥ {o} }

(;,u_) e E and it is not difficult to see (using for example Corollary 1.13 and Theorem
N R

- 1.16 of [2]) that (;,u_) is an isolated point in E.
N n - "
I Let S be the closure in £ x c;ﬂ’(B') of the set of the solutions of #(R,z) = 0

that are not in R.

S 1is locally compact in ®* x c)'%(3,).

from the proof of theorem 3.2 we easily deduce that (-i,u_) is a nonradial

I, bifurcation point of ® and there exists a N > 0 such that :n v {(Rz) ¢ |R-R| < W,
lu~utc« n} the bifurcating set is a continuocus curve.

;": 1':. following theorem gives a result about the global behavior of the set of nonradial

solutions of #(R,u) = 0 bifurcating from (;,u_).
R

Thsgrem.4.3. The connected component ( of S v {((R,u_))} to which (R,u_) belongs is
R

- _ R
either unbounded or meets € outside of a neighborhood of (R,u_).
R

Remark 4.4. Note that to C by the action of the symmetry, corresponds an n-dimensional

" set of solutions of &(R,z) = 0.

. In order to prove theorem 4.3 we require a lemma.

Lemma 4.5. If C 1is boundad and does not meet any point (R,u) € EN{(R,u_)) then there
R
g L P

exists & bounded open set 0 c »t x Cp (By) such that
1) Ce 0

14) 30 nS =§¢

141) 0nR={(R,u) € R 1 |R-R| ¢ €, and fu-u? < €y}

R
where
- €, € 3 min{R,e,0((R,u_),EN((Ryu_) ) ,p(R, O\ Colh)}
R R
-19-
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iv) Za>0: wrul e 0: [RR| > ¢, or fuu_t > ¢y => 0((Ru),R) > a.

We will not give here the proof of this lesma which can be done in the same way, with

obvious modifications, that in ([10] (Lesma VIII.3) or in [9]) (Lemma 1.2). B

Proof of theorem 4.3.
We will argue by contradiction.

Suppose that C 1is bounded and does not meet any point (R,ugp) e E\((;.u_)l. Then
R
there exist 0, €y O as in lesms 4.5.

Let (R,u) € R, (R,u) ¥ (R,u_).
_ R
If 0 < |[R-R| ¢ €y and Yu-u t < €,, (R,u) €U n R, s0, because of the ¢,
R

choice, u is uniquely determined as a function of R : u = up. Thus put
I(R’“n) - % M“R'SR)' l(n'“n) 5> 0 and there are no zeros of #(R,*) in
IR} x NOR\ ““ﬂ"(n.un)” where "“n"(n,un)’ is the set

“yea =
s e Co (By) 1 Mz-u)d < .‘n'“n)‘.

- = 1
1t |R-r] < €, and lu_n-ul >e, orif |r-R| > ¢, put ) T then
on n '(u"(l'u), - 'n
Take now R : R ¢ R < ;n:o, and choose R’ big enough that 0.. « §. Consider
s = 1nf(lu"“) + R<L ¢ Reeg, (L,u) €R}

s > 0, because of the choice of ¢_ and since R > ;. Consider the set

o
B={f(Lu)enr x c;“'(i1) : p((L,8),R) <3

- 1
s = min(s,z ) ,
then ]

- . - -
Qx O\B) 0 (IRR] x ¢ (B,

140 =

is an open set in [(R,R"] x Co (B and there are no zeros of & on 2Q,

y!
Therefore
a(8(L,%),8 ,0) 1s defined and is constant V L € (R,R']
by homotopy invariance, so is equal to 0 since @ , = ¢,
R

On the other hand since R < ;no
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Ql - Ol\ ;(u.,:)
and by excision we deduce
a(8(R,), Ol\i(u’,-l),o) = 4(4(R,*),8.,0) =0 .

Using the same argument we obtain the same result if R 1is such that ;-co <R ;.

Moreover observe that, by the homotopy invariance property, d(O(R,O),OR,O) is

constant for R € (;-to,;no).
Choose finally R, and Ry : ;-co <Ry < R < Rg < ;#co. Using the excision and ' 1
additivity properties and the fact that uy is the only zero of O(Ra.') in ;(“n oSp ) - Py 1
a o a r.o-
we infer E
A((R,,*),0p ,0) = L(M(R,*),up ,0) + A(S(R ,*),0, \ Blu, ,8, ),0) R
a a a a o S
analogously S
d(“(n..').on'm) - 1(.(lﬂv')v\l‘.:o) + d(‘(ll..').on.\ '(“R.'.R.,'o) '". 4"1
]
from which R
(4.1 LOMRG, ") sup 100 = 108(Ry, ) 0y ,0) R
* Put ) -
° 2
& -
“(R,u‘)v v+¢R G f'(uR)v
and
4 2
— R G f'(u )] _#4O (by (3.5))
o R] R=R
8o an eigenvalue of & “(R.un) crosses 0 when R crosses ; and this eigenvalue is '*L-—'}

simple. Then the index 1(‘(!.');\1‘.0) must have opposite sign on opposite sides of R

in (;-co,-iﬂ:o) in contradiction to (4.1). [ ]
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ABSTRACT (continued)

Answering a question posed by Smoller and Wasserman, we show this happ
if £ satisfies suitable assumptions. Therefore, we investigate the global
structure of the nonradial solution set.
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